Optional criterionOptional evaluationOptional llmOptional memoryOptional skipOptional skipCheck if the evaluation arguments are valid.
Optional reference: stringThe reference label.
Optional input: stringThe input string.
If the evaluator requires an input string but none is provided, or if the evaluator requires a reference label but none is provided.
Invoke the chain with the provided input and returns the output.
Input values for the chain run.
Optional config: BaseCallbackConfigOptional configuration for the Runnable.
Promise that resolves with the output of the chain run.
Format prompt with values and pass to LLM
keys to pass to prompt template
Optional callbackManager: CallbackManagerCallbackManager to use
Completion from LLM.
llm.predict({ adjective: "funny" })
Static deserializeStatic fromLLMCreate a new TrajectoryEvalChain.
Optional agentTools: StructuredTool<ZodObject<any, any, any, any, {}>>[]The tools used by the agent.
Optional chainOptions: Partial<Omit<LLMEvalChainInput<EvalOutputType, BaseLanguageModel<any, BaseLanguageModelCallOptions>>, "llm">>The options for the chain.
Static resolveOptional prompt: BasePromptTemplate<any, BasePromptValue, any>Optional agentTools: StructuredTool<ZodObject<any, any, any, any, {}>>[]Static toolsGenerated using TypeDoc
A chain for evaluating ReAct style agents.
This chain is used to evaluate ReAct style agents by reasoning about the sequence of actions taken and their outcomes.