Class TrajectoryEvalChain

A chain for evaluating ReAct style agents.

This chain is used to evaluate ReAct style agents by reasoning about the sequence of actions taken and their outcomes.

Hierarchy

  • AgentTrajectoryEvaluator
    • TrajectoryEvalChain

Constructors

  • Parameters

    • fields: LLMChainInput<EvalOutputType, BaseLanguageModel<any, BaseLanguageModelCallOptions>>

    Returns TrajectoryEvalChain

Properties

llm: BaseLanguageModel<any, BaseLanguageModelCallOptions>
outputKey: string = "text"
outputParser: TrajectoryOutputParser = ...
prompt: BasePromptTemplate<any, BasePromptValue, any>
requiresInput: boolean = true
requiresReference: boolean = false
criterionName?: string
evaluationName?: string = ...
llmKwargs?: BaseLanguageModelCallOptions
memory?: BaseMemory
skipInputWarning?: string = ...
skipReferenceWarning?: string = ...

Accessors

  • get inputKeys(): string[]
  • Returns string[]

  • get outputKeys(): string[]
  • Returns string[]

Methods

  • Call the chain on all inputs in the list

    Parameters

    • inputs: ChainValues[]
    • Optional config: (BaseCallbackConfig | Callbacks)[]

    Returns Promise<ChainValues[]>

  • Run the core logic of this chain and add to output if desired.

    Wraps _call and handles memory.

    Parameters

    • values: ChainValues & BaseLanguageModelCallOptions
    • Optional config: BaseCallbackConfig | Callbacks

    Returns Promise<ChainValues>

  • Check if the evaluation arguments are valid.

    Parameters

    • Optional reference: string

      The reference label.

    • Optional input: string

      The input string.

    Returns void

    Throws

    If the evaluator requires an input string but none is provided, or if the evaluator requires a reference label but none is provided.

  • Evaluate a trajectory.

    Parameters

    • args: LLMTrajectoryEvaluatorArgs
    • Optional callOptions: BaseLanguageModelCallOptions
    • Optional config: BaseCallbackConfig | Callbacks

    Returns Promise<ChainValues>

    The evaluation result.

  • Parameters

    • Optional reference: string

    Returns string

  • Get the agent trajectory as a formatted string.

    Parameters

    • steps: AgentStep[]

      The agent trajectory.

    Returns string

    The formatted agent trajectory.

  • Invoke the chain with the provided input and returns the output.

    Parameters

    • input: ChainValues

      Input values for the chain run.

    • Optional config: BaseCallbackConfig

      Optional configuration for the Runnable.

    Returns Promise<ChainValues>

    Promise that resolves with the output of the chain run.

  • Format prompt with values and pass to LLM

    Parameters

    • values: ChainValues & BaseLanguageModelCallOptions

      keys to pass to prompt template

    • Optional callbackManager: CallbackManager

      CallbackManager to use

    Returns Promise<EvalOutputType>

    Completion from LLM.

    Example

    llm.predict({ adjective: "funny" })
    
  • Parameters

    • inputs: Record<string, unknown>
    • outputs: Record<string, unknown>
    • returnOnlyOutputs: boolean = false

    Returns Promise<Record<string, unknown>>

  • Parameters

    • input: any
    • Optional config: BaseCallbackConfig | Callbacks

    Returns Promise<string>

  • Returns SerializedLLMChain

    Deprecated

  • Parameters

    Returns Promise<LLMChain<string, BaseLanguageModel<any, BaseLanguageModelCallOptions>>>

  • Create a new TrajectoryEvalChain.

    Parameters

    • llm: BaseChatModel<BaseLanguageModelCallOptions>
    • Optional agentTools: StructuredTool<ZodObject<any, any, any, any, {}>>[]

      The tools used by the agent.

    • Optional chainOptions: Partial<Omit<LLMEvalChainInput<EvalOutputType, BaseLanguageModel<any, BaseLanguageModelCallOptions>>, "llm">>

      The options for the chain.

    Returns Promise<TrajectoryEvalChain>

  • Parameters

    • Optional prompt: BasePromptTemplate<any, BasePromptValue, any>
    • Optional agentTools: StructuredTool<ZodObject<any, any, any, any, {}>>[]

    Returns BasePromptTemplate<any, BasePromptValue, any> | ChatPromptTemplate<any, any>

  • Get the description of the agent tools.

    Parameters

    • agentTools: StructuredTool<ZodObject<any, any, any, any, {}>>[]

    Returns string

    The description of the agent tools.

Generated using TypeDoc